Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique
نویسنده
چکیده
This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control. Keywords—Smart structure, Finite element method, State space model, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI
منابع مشابه
Active control of vibrations relieves a designer from strengthening the structure from dynamic forces and the structure itself from extra weight
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Eul...
متن کاملT.C. MANJUNATH and B. BANDYOPADHYAY : SMART CONTROL OF CANTILEVER STRUCTURES
This paper features the modelling and design of a type of multirate output feedback based controller (Fast Output Sampling Feedback FOS) to control the flexural vibrations of a smart flexible Timoshenko cantilever beam for a Single Input Single Output (SISO) case by retaining the first 2 dominant vibratory modes. Piezoelectric patches are bonded as sensor / actuator to the master structure at d...
متن کاملController Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Eul...
متن کاملMathematical Modeling of SISO based Timoshenko Structures – A Case Study
This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in s...
متن کاملModeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators
Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system’s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timosh...
متن کامل